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Coherence theory is used to analyze the statistical properties of ocean-acoustic intensity fluctuations
measured after saturated multipath propagation. Previous analyses in this area have been implicitly
limited to certain special cases for which the time-bandwidth product of the field received from a
given source is unity. In this paper, the statistical description is extended and generalized to be a
function of measurement time and temporal coherence. As a result, the well known 5.6-dB
transmission loss~TL! standard deviation of Dyer is found to be a special case of a more general TL
standard deviation that approximates 4.34 sqrt~1/m! dB when the time-bandwidth productm is large.
Therefore, the TL standard deviation approaches zero for increasingm, as it must in the
deterministic limit of an arbitrarily large sample size. A similar generalization is obtained for the TL
mean, from which it is found that the sonar equation must be corrected for am-dependent bias that
vanishes in the deterministic limit of largem. Additionally, asymptotic analysis shows that intensity
statistics in the saturated region converge to a log-normal distribution, wherem.4 is typically
sufficient for the log-normal approximation to be made.

PACS numbers: 43.30.Re, 43.30Vh, 43.30Wi, 43.30.Xm@MBP#

INTRODUCTION

As long ago as World War II, marine physicists under
the National Defense Research Committee1 observed that
natural disturbances, such as underwater turbulence and
passing surface or internal gravity waves, often place the
ocean-acoustic waveguide in such a state of flux that a sig-
nal, deterministic when transmitted from the source, be-
comes fully randomized after propagating only several chan-
nel depths away in range to a receiver. When not properly
accounted for, such randomization can severely degrade the
accuracy of an experimental measure, as well as any param-
eter estimates based upon this measure. However, with the
knowledge that the field is fully randomized, and thereby can
be described by a circular complex Gaussian random
~CCGR! variable,2 many useful statistical properties of sub-
sequent intensity measurements and parameter estimates can
be readily deduced by respective applications of coherence
theory and estimation theory.

The CCGR field assumption has a long history. In the
analysis of random signals and noise, it has been legitimately
made when the central limit theorem applies, such as in the
scattering of radiation from fluctuating targets3 and surfaces
with wavelength-scale roughness.4 In the present context, it
is the basis for the Rayleigh scatter channel that is not only
frequently cited in communication theory,5 but has also been
used to describe the saturated region6 of multipath propaga-
tion in the ocean for many years.1 Previous analyses in this
area, however, have been implicitly limited to certain special
cases for which the time-bandwidth product of the field re-
ceived from a given source is unity. In this paper, the statis-
tical formulation is extended and generalized to be a function
of measurement time and temporal coherence. This more
general framework is therefore highly relevant to modern
ocean-acoustic sonar and communication systems that em-
ploy time-bandwidth products exceeding unity, or average

over many independent samples. Such averaging is often es-
sential when the goal is to reduce the variance of a measure-
ment, or subsequent parameter estimate, enough for the error
to fall within a tolerable threshold.

Much of the literature in ocean-acoustic transmission
scintillation6–11 closely follows or is based upon the classic
analysis of Dyer,12 who, like his predecessor Bergmann,1

concluded that in many circumstances a Rayleigh scatter
channel can be used to describe the random fluctuations of
measured intensity. In order to extend this analysis to the
case of variable time-bandwidth product, some specific re-
sults from Dyer’s ‘‘Statistics of sound propagation in the
ocean’’12 are used as a guide line. First, techniques well
established in coherence theory are used to formulate the
statistical properties of averaged intensity in terms of mea-
surement time and temporal coherence. This is done in Sec.
I where it is also shown that the ‘‘short-time average’’ of
Dyer corresponds to a measurement that has a time-
bandwidth product of unity and is therefore by definition
instantaneous. In Sec. II, the distribution for the logarithm of
averaged intensity is given as a function of measurement
time and temporal coherence. As a result, Dyer’s well known
5.6 dB transmission loss~TL! standard deviation and 2.5-dB
augmentative bias in mean TL are found to be valid only for
the special case of an instantaneous measurement. The gen-
eral TL standard deviation and mean have forms that, respec-
tively, approach zero and210 log~the mean-square trans-
mission!, as they must, in the deterministic limit of
increasing time-bandwidth product. Further analysis along
this line indicates that the logarithm of averaged intensity has
a distribution that rapidly converges to a Gaussian for time-
bandwidth products exceeding four. The significance of this
particular finding is that, by invocation of the central limit
theorem for sufficiently large time-bandwidth products, in-
tensity statistics in the saturated region can legitimately be

769 769J. Acoust. Soc. Am. 100 (2), Pt. 1, August 1996

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  18.38.0.166 On: Mon, 12 Jan 2015 18:27:32



described as log-normal, which runs counter to some previ-
ous suggestions.12

Additionally, certain special assumptions were made in
the derivation of a well-known probability distribution for
the ‘‘noise of multiple distant sources’’12 that limits its gen-
eral usefulness. Specifically, theintensity contribution of
each source was assumed to be independent, exponentially
distributed, and comprised of a single tone spectrally disjoint
from the simultaneously measured tones of the other sources.
These assumptions imply that the time-bandwidth product of
the total received field must equal the number of independent
sources, and the measurement period must be such that the
spectral contribution of each tone is resolvable according to
the Rayleigh criterion.13 In Sec. III of the present paper, the
more general assumption is made that the measuredfields
from the independent sources are independent CCGR vari-
ables, and no restriction is made on their spectra except that,
for practical considerations, they have finite bandwidth. The
intensity distribution for the ‘‘noise of multiple distant
sources’’ derived under this more general assumption is
given as a function of the measurement time and temporal
coherence of the total received field. Similar differences be-
tween the distributions for a ‘‘signal plus noise’’12 derived
in previous work and those derived here are discussed.

The statistics of averages of independent intensity
samples are also investigated. Such averages are widely used
in a variety of ocean acoustic applications. For example, in
displaying the beamformed output of a hydrophone array, it
is common practice to reduce the variance by averaging the
uncorrelated intensities received on adjacent nonoverlapping
beams.14 Similarly, it is sometimes convenient to average
independent multipath arrivals that are temporally disjoint,
or to average independent measurements of backscatter to
reduce the variance in scattering strength or target strength
estimation.14–15 In Sec. IV, the probability distributions for
such amalgamated intensity measurements are investigated.
The probability distribution for the difference between two
intensity measurements is then given in Sec. V to address the
issue of monitoring a moving source or scatterer.

A brief discussion of classical parameter resolution
bounds and Fisher information is then provided in Sec. VI
for measurements obeying the various distributions pre-
sented. This is used to show that parameter resolution is
highly dependent upon the way that intensity measurements
are made. For example, the logarithmic measures commonly
used in ocean acoustics, such as scattering strength, target
strength and TL, must be derived from a corrected version of
the sonar equation that accounts for an inherent bias depen-
dent on the time-bandwidth product of the intensity average.
This bias attains its maximum magnitude of 2.5 dB for an
instantaneous sample and only vanishes in the deterministic
limit of large time-bandwidth product. The logarithmic mea-
sures then have mean-square errors that approximate the
Cramer–Rao lower bound with increasing accuracy for in-
creasing time-bandwidth product. Finally, a quantitative
measure is given for the amount of information that can be
lost by certain widely practiced procedures for reducing a set
of measurements to a single mean statistic. Such reduction is

often employed in ocean-acoustic processing but may be det-
rimental to subsequent parameter estimates.

I. INTENSITY STATISTICS AS A FUNCTION OF
MEASUREMENT TIME AND TEMPORAL COHERENCE

While the expected intensity of a CCGR field may, for
all practical purposes, be temporally invariant during a given
set of measurements, the experimental measures of intensity
are themselves still subject to statistical fluctuation regard-
less of the amount of finite-time averaging employed. How-
ever, under the more stringent assumption of stationarity,2

many statistical properties of the these fluctuations become
invariant and can be readily expressed in terms of the mea-
surement averaging time and the coherence of the received
field. As a first step in this direction, the distribution for the
average intensity measured from a CCGR field, along with
the first few moments, are derived in terms of the time-
bandwidth product of the received field. The derivation, pre-
sented in Sec. I A, mechanically parallels that given in the
optics literature16 for the statistical properties of polarized
thermal light. The way that this analysis extends previously
derived ocean-acoustic intensity statistics is discussed in Sec.
I B. A brief summary of relevant literature in acoustics, ra-
dar, and optics is then given in Sec. I C.

A. The gamma distribution

Let the field measured at a receiver be denoted by
z(t)exp~2i2p f ct!. The envelopez(t) contains the stochastic
properties of the field modulated at constant carrier fre-
quency f c . Let both the modulated and demodulated fields
be CCGR variables such that the realx(t) and imaginary
y(t) components of the envelopez(t) are independent
Gaussian random variables with zero mean, and the same
variance. Therefore, at any instantt, the probability that the
envelope will have valuez5x1 iy is

P~x,y!5
1

2p^x2&
expH 2

x21y2

2^x2& J ,
for 2`,x,y,`, ~1!

where the variance ofz is given by ^x2&1^y2& and
^x2&5^y2&. Rewriting Eq.~1! in polar coordinates, the uni-
form phase distribution can be integrated out. The squared
magnitude of the field then defines the instantaneous inten-
sity I (t)5uz(t)u2, which obeys an exponential distribution

P~ I !5
1

Ī
expH 2

I

Ī
J , for 0<I,`,

50, elsewhere, ~2!

with meanĪ5^I &52^x2& and variance (Ī )25^I 2&2^I &2. An
essential quality of this exponential form is that the most
probable value for instantaneous intensity is the same as the
most probable value for the field, namely zero.

While the concept of an instantaneous intensity will
presently be shown to be more than a mere mathematical
stepping stone, it certainly must be used in this way to for-
mulate the statistical properties of actual intensity measure-
ments. This is because actual intensity measurements can
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only be made over a finite time period but still need to be
expressed in terms of the instantaneous fluctuations of an
underlying random field. For example, let the average inten-
sity measured over time intervalT be

W5
1

T E
2T/2

T/2

I ~ t !dt. ~3!

A measure of the number of independent intensity fluctua-
tions or coherence cellsm averaged during the periodT is
given by the squared-mean-to-variance ratio or signal-to-
noise ratio~SNR! of the measurementW. Under the assump-
tion that the field undergoes stationary fluctuations, such that
its autocorrelation̂ z* (t)z(t1t)& is only a function of the
time lagt and not the absolute time referencet, the SNR of
W is expressible in terms of the temporal coherence function

g~t!5
^z* ~ t !z~ t1t!&

^uz~ t !u2&
, ~4!

and the triangle function

DS t

TD512UtTU, for UtTU<1,

DS t

TD50, elsewhere,
~5!

which arises from auto-convolution of a rectangular mea-
surement window of lengthT. Specifically, the SNR ofW, or
equivalently the number of independent intensity fluctuations
averaged during the measurement timeT, is not restricted to
discrete values but rather is defined by the continuous vari-
able

m5
^W&2

^W2&2^W&2
5F1T E

2`

`

DS t

TD ug~t!u2dtG21

, ~6!

where the last equality is obtained using CCGR moment
factoring.2

Apart from experimental intrusion, the random field un-
dergoes fluctuations that occur over a characteristic periodtc
referred to as its coherence time scale. A useful measure of
the coherence time scale is

tc5E
2`

`

ug~t!u2dt. ~7!

Noting the infinite integration limits in this definition, one
would expect that more accurate experimental estimates oftc
would be obtained for longer measurement timesT. This is
certainly the case, and can be easily shown by considering
the limiting form of Eq.~6! for T@tc . Here, the number of
coherence cells is well approximated by the linear relation-
ship m5T/tc between the measurement period and coher-
ence time scale. In the opposite extreme of a measurement
time much less than the field’s intrinsic coherence time scale,
such thatT!tc , the integral of Eq.~6! approaches its mini-
mum value of unity, andm51 becomes a very good approxi-
mation. In this case, the average intensity measurementW is
nearly instantaneous, and for practical purposes obeys the
exponential distribution of Eq.~2!, but not in the vicinity of
zero unlessm is identically equal to one, as will be demon-
strated presently.

First, it is useful to consider the general dependence ofm
on T/tc as illustrated in a particular example. This depen-
dence is given in Fig. 1 for the case in whichz(t) has a
rectangular frequency spectrum such thatS ( f )5tc for
u f u<1/(2tc) and S ( f )50 elsewhere,S ( f ) being the
Fourier transform ofg~t! which takes the form

g~t!5
sin~pt/tc!

pt/tc
. ~8!

It is easy to verify that in an estimate of the spectrum ofz(t)
over finite time windowT, only m independent frequency
components can be resolved by the Rayleigh criteria in the
interval u f u<1/(2tc), which equals the number of temporal
samples attainable at the Nyquist rate.17 In this case, as in the
general case of an integrable spectrum,m measures the time-
bandwidth product of the field received over finite-time win-
dow T, just as the ratiom/T measures its bandwidth. For
example, whenm is linearly dependent uponT, as it is for
T@tc , the measured bandwidthm/T is a good approxima-
tion to the intrinsic bandwidth of the fluctuating field 1/tc . In
the opposite extreme whentc@T, the measured bandwidth
of roughly 1/T is so dominated by the effect of temporal
windowing that it cannot provide useful information about
the coherence time scale of the fluctuating field.~A more
rigorous discussion of the time-bandwidth product can be
found in Ref. 18.!

In this context, if the continuous time averageW is re-
placed by an ensemble average ofm independent and iden-
tically distributed instantaneous intensity samples from the
same data, both the mean and variance of the resulting en-
semble average are identical to those of the original continu-
ous average. Furthermore, the probability distribution for the
ensemble average is readily obtained as the inverse Fourier
transformation of the characteristic function2 for instanta-
neous intensity raised to the powerm. This process leads to
the well-known gamma distribution

FIG. 1. Time-bandwidth productm as a function ofT/tc , whereT is the
measurement period andtc is the intrinsic coherence time scale of the fluc-
tuating field. The solid line shows this dependence when the field has a
rectangular frequency spectrum. The dashed line shows the linear asymptote
for largeT/tc .
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P~W!5
~m/ Ī !mWm21 exp$2m~W/ Ī !%

G~m!
, for 0<W,`,

50, elsewhere, ~9!

that generally provides an excellent approximation to the ex-
act distribution for averaged intensityW, which has a much
less convenient form, as is discussed in detail in Ref. 2. For
example, Eq.~9! converges to the exact distribution forW in
both the limits ofT@tc andT!tc . However, some slight
discrepancy between this approximate form and the exact
form exists whenT is approximately equal totc .

When instantaneous intensity is digitally sampled at the
Nyquist rate, as is common practice, Eq.~9! is the exact
distribution for discrete-time-averaged intensity. Equation
~9!, therefore, is essential to the present analysis because it
provides a distribution for fluctuating intensity in terms of
two quantities that may be estimated with great accuracy and
relative ease in an experimental situation, namely the mean
intensityĪ and the time-bandwidth productm of the measure-
ment. Additionally, because the average intensityW has a
variance (Ī )2/m that depends upon the meanĪ , its fluctua-
tions depend on the expected value of the signal and there-
fore fall under the category ofsignal-dependentnoise.

Returning again to the issue of measuring instantaneous
intensity in an actual experiment, upon inspection of Eq.~9!,
it becomes apparent thatm51 is the only value form that
does not exclude the possibility of measuring an average
intensityW that can be identically zero. For all other values,
includingm very near to, but not identically unity, the instan-
taneous intensity passes through but does not remain at the
isolated value of zero during the measurement time. The
positive-semidefinite nature of instantaneous intensity then
insures that a finite-time average can never yield an average
value that is identically zero. The forgoing may explain why,
in many experimental situations of high resolution and large
sample population, finely binned histograms of fluctuating
intensity may follow the exponential distribution very
closely except in the vicinity of the origin, where the fre-
quency of samples decays to zero rather than growing to a
maximum value.

To investigate the asymptotic properties of the gamma
distribution for large time-bandwidth product, it is conve-
nient to employ the general notation

mi~q!5^@q2m1~q!# i&, ~10!

for the central moments of integer orderi.1, where
m1~q!5^q&, and the random variableq obeys an arbitrary
probability distribution. It is also convenient to employ the
compact notationG „m1(W),m… to denote the gamma distri-
bution, andN „m1(h),m2~h!… to denote the Gaussian distri-
bution

Ph~h!5
1

@2pm2~h!#1/2
expS 2

@h2m1~h!#2

2m2~h! D , ~11!

where2`,h,`.
While it is not difficult, with the aid of a digital com-

puter, to computationally verify that for largem, the gamma
distribution G „m1(W),m… tends toward a Gaussian

N „m1(W),m2(W)… with the same mean and variance, an
analytic proof has been supplied by Mandel, who demon-
strated the asymptotic convergence of all the corresponding
moments.16 A compelling but less complete demonstration
can be made by comparison of the kurtosis~peakedness!,

k q5
m4~q!

@m2~q!#2
, ~12a!

and skew

sq5
m3~q!

@m2~q!#3/2
, ~12b!

of these distributions, where the necessary moments are
readily obtained upon differentiation of the appropriate char-
acteristic functions. For the Gaussian distribution, this pro-
cedure leads to a kurtosisk h53, and a skewsh50, the latter
indicating symmetry in the distribution of probability about
the mean. For the gamma distribution, the kurtosis

k W531
6

m
, ~13a!

and skew

sW5
2

Am
, ~13b!

have asymptotically Gaussian behavior form@1, or roughly
m>10 in practice. However, averaged intensity is positive
semidefinite, and therefore its distribution never spans the
full domain of a Gaussian, except arguably in the mathemati-
cal limit of arbitrarily largem.

B. Application to ocean-acoustic transmission

As noted during its development, the above formulation
for the statistical properties of average intensity is based
upon the assumption that the underlying acoustic field at the
receiver undergoes CCGR fluctuations. Due to the recur-
rence of CCGR fields in such a wide variety of otherwise
unrelated realizations of stochastic wave propagation, which
follows from the central limit theorem, it is often difficult to
determine the cause of uncertainty in a particular saturated
measurement without soliciting external information. In
ocean acoustics, such external information has been histori-
cally collected, and a set of basic causes for field fluctuations
can be readily cited.

Specifically, the randomization of acoustic fields in the
ocean typically arises from~1! incoherent source fluctuation,
~2! fluctuation of a scatterer,~3! relative motion between a
scatterer and source or receiver in a waveguide~4! relative
motion between source and receiver in a waveguide,~5! fluc-
tuation of the waveguide boundary, as for example due to
surface waves,~6! medium scintillation or fluctuation in the
index of refraction due to such phenomenon as internal
waves or turbulence. Typically the last three are associated
with transmission scintillation, which becomes saturated af-
ter relatively short propagation ranges, greater than a wave-
guide depth, if many more than a single acoustic mode con-
tributes significantly to the received field, in keeping with the
central limit theorem. The origin of the fluctuation in these
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cases is the change in the interference structure of the wave-
guide brought on by the given relative motions, which there-
fore typically need to exceed only a wavelength scale in
random amplitude for saturation to occur. For example,
Dyer12 has noted that his model of transmission scintillation
‘‘applies to an ensemble of experiments that contains signifi-
cant rangewisemotionof the source with respect to the~mul-
tipath interference! structure,’’ as in case~4! above. How-
ever, it is the point of this paper that suchmotioncontributes
to the temporal fluctuations whose time scale must be com-
pared to the measurement averaging time to obtain general
and accurate statistics. Even early researchers in ocean-
acoustics found that these fluctuations can occur over ex-
tremely short periods, less than 1 min,1 so highlighting the
need for the more general formulation provided here.

The validity of the CCGR field assumption can easily be
tested in practice by examining the statistics of the field re-
ceived by a hydrophone over time. The extension to previous
work lies in the realization that the temporal coherence func-
tion or spectrum at the receiver should also be estimated to
determine the time-bandwidth product of the measurement.
This then leads to the general distribution for averaged in-
tensity as a function of measurement time and temporal co-
herence given here in Eq.~9!.

In this context, the exponential distribution, given in Eq.
~9! of Ref. 12 for intensity measured in a ‘‘short-time aver-
age,’’ is only valid for measurements of instantaneous inten-
sity wherem51, and not for longer stationary averaging pe-
riods for which m.1. While Dyer defines a ‘‘short-time
average’’ as ‘‘... an average taken over a time long as com-
pared to 2p/v ~the carrier frequency’s period! but much less
than the stationarity time ...’’,12 this definition is not suffi-
cient to meet the necessary requirement for the exponential
intensity distribution to be valid, namely thatm51. If the
‘‘coherence time’’ were substituted for the ‘‘stationarity
time’’ in this definition, it would be stated correctly in the
present context.

The contention of Ref. 12 that the variance of the natural
log of averaged intensity is ‘‘independent of any of the met-
rics of the problem,’’ therefore, must be put into perspective.
This is because the metric describing the number of coher-
ence cellsm in the intensity average was implicitly assigned
to unity. The relevance of these issues to the well known 5.6
dB transmission loss standard deviation of that reference will
be examined in Sec. II.

C. Historical notes

Almost immediately after Bergmann’s analysis of
ocean-acoustic intensity fluctuations for the war effort, and
much earlier than its unclassified appearance more than 20
years later, Rice19 showed that the gamma distribution could
be used to describe the statistical properties exhibited by the
finite time average of an exponentially distributed random
variable. Shortly thereafter, Mandel16 applied Rice’s work in
his demonstration that the time-integrated intensity of polar-
ized thermal light undergoes fluctuations that can be well
described by the gamma distribution, which has lain the
foundation for the formulation given in Sec. I A of the
present paper.

With a minor change of variables, the same distribution
was obtained independently by Swerling in his case II prob-
ability for the radar detection of a fluctuating target by a
mean-square processor which integrates over returns fromm
active pulses.3 An ocean-acoustic confirmation of Swerling’s
work has apparently been given in the underwater target
scattering histograms of Dahl and Mathisen.20 Those histo-
grams were derived by peak amplitude analysis, correspond-
ing to a time-bandwidth product of unity, for which the am-
plitude distribution is Rayleigh and the intensity distribution
is exponential. Similar concepts and distributions have been
used to describe the intensity statistics of laser beam fluctua-
tions induced by propagation through the turbulent atmo-
sphere. In that community the model is known as the ‘‘single
scatter model’’ of atmospheric scintillation.21,22

Images derived from CCGR fields exhibit the same kind
of signal-dependent noise described by the statistical formu-
lation given in Sec. I A. The noise in such images is com-
monly referred to asspecklewhen the time-bandwidth prod-
uct of the measurement is near unity, for which the intensity
fluctuations attain their largest variance. Such noise is often
found in synthetic aperture radar~SAR!, medical ultra sound,
side-scan sonar and towed-array reverberation images be-
cause the associated active systems typically irradiate terrain
of wavelength-scale roughness with narrow-band waveforms
of low time-bandwidth product.

II. STATISTICS OF LOGARITHMIC INTENSITY
MEASURES AND TRANSMISSION LOSS

It is traditional in ocean-acoustics, and many other dis-
ciplines, to measure fluctuating intensity in logarithmic units,
although the reasons given for such a measure often seem to
verge on scientific folklore. For example, reference is often
made23 to the apparent logarithmic response of human audi-
tory and visual perception to intensity stimulus,24 the impli-
cation being that such a response has been optimized by
millions of years of evolution. However, a particularly com-
pelling quantitativeadvantage of the logarithmic measure
exists and can be readily cited. That is, for the average in-
tensity of a fully randomized Gaussian field, a logarithmic
measure homomorphically transforms signal-dependent
noise into additive signal-independent noise. Consequently,
optimal methods for finding expected signals or patterns in
independent additive noise, which also happen to be well
established, can be directly applied when the fluctuating in-
tensity of a CCGR field is measured in logarithmic units.

In this context, a theoretical foundation for logarithmic
measures of fluctuating intensity has recently been derived in
the optics literature.25 It is based upon criteria for optimal
pattern recognition that follow from statistical estimation,
optimal filter and information theory. Because this theory
supports the use of traditional logarithmic measures of fluc-
tuating intensity, it should not be surprising that the probabil-
ity distributions upon which it is based also describe the
statistics of ocean-acoustic TL measurements. This formula-
tion is presented here in Sec. II A. The way it extends pre-
vious work is discussed in Sec. II B. A brief summary of
relevant literature in acoustics and optics is given in Sec.
II C.
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In a tangential point, the question of whether the theory
of Ref. 25 has any bearing on the logarithmic response of
human auditory and visual perception to intensity stimulus
has been recently raised,26 primarily because the optical and
acoustics fields received by the eye and ear often undergo
CCGR fluctuations.

A. The exponential-gamma distribution

The intensity levelis defined by

L5 ln
W

I ref
, ~14!

where I ref is a reference intensity such that the normalized
mean intensity isĪ 05 Ī /I ref . Following Bayes’ theorem, the
gamma distribution for the measurementW leads to the
exponential-gamma distribution

P~L !5
~m/ Ī 0!

m~eL!m21 exp$2m~eL/ Ī 0!1L%

G~m!
,

for 2`,L,`, ~15!

for the log-transformed statisticL, which is denoted by
EG ~^L&,m! for notational convenience. The central mo-
ments of the exponential-gamma distribution are most
readily obtained by direct integration with respect to the vari-
ableW. Such a process yields the expected intensity level

^L&5 ln~ Ī 0!1c~m!2 ln m, ~16a!

and variance

^L2&2^L&25z~2,m!, ~16b!

which in general is not inversely proportional to the time-
bandwidth productm. Here,c~m! is Euler’s psi function27

and z~2,m! is Riemann’s zeta function.27 Formulas defining
these special functions are given in Appendix A. For ex-
ample,z~2,1!5p2/6, and in the limit asm@1, the expectation
value ofL converges to ln~Ī 0! while the variancez~2,m! ap-
proaches 1/m.

It is of great practical significance that intensity level
L has a variance that does not depend on the expected inten-
sity Ī , as average intensityW does, but only on the time-
bandwidth productm of the measurement. For example, sup-
pose that the instantaneous intensity of a CCGR field is
practically stationary over short periods, but not over long
periods where some trend in expected intensity emerges.
Further suppose that this trend is to be measured by time
series analysis, where average intensity samples are consecu-
tively collected over short-term stationary periods and then
concatenated. The resulting intensity time series will have a
standard deviation that is directly proportional to the local
value of expected intensity, making comparison of samples
with different expectation values difficult. Conversion to
logarithmic units, however, homomorphically transforms
such signal-dependent noise into additive signal-independent
noise. The log-transformed time series has a uniform stan-
dard deviation when the time-bandwidth product of the mea-
surement is chosen to be constant for all samples. Well-
established techniques for processing signals in additive
noise are then appropriate. In particular, the optimal method

for recognizing the nonstationary trend is provided by
matched filtering the time series with hypothetical trends in
the log-transformed domain.25 This technique has also
proven to be valuable for recognizing patterns in active sonar
images.14,28Thespecklefound in such images, which is most
pronounced for low time-bandwidth product measures, arises
from the same CCGR field fluctuations described here. Char-
acteristic scales of the nonstationary trends in both saturated
intensity time series and speckled images are best measured
in the logarithmic domain.25

Some of the asymptotic properties of the exponential-
gamma distribution can be ascertained by considering its
kurtosis

k L5316
z~4,m!

@z~2,m!#2
, ~17a!

and skew

sL522
z~3,m!

@z~2,m!#3/2
, ~17b!

for increasingm. Apparently, the exponential-gamma ap-
proaches a Gaussian with the same mean and variance more

FIG. 2. ~a! Kurtosis for the exponential-gamma distribution in solid line and
for the gamma distribution in dashed line. The Gaussian kurtosis is 3.~b!
Skew for the exponential-gamma distribution in solid line and for the
gamma distribution in dashed line. The Gaussian skew is zero.
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rapidly than the gamma distribution, as is evident after in-
spection of the curves provided in Fig. 2. For practical pur-
poses, the criterion thatm.4 appears to be sufficient for
EG ~^L&,m! to be approximated byN (^L&,^L2&2^L&2).

The Gaussian asymptote of the exponential-gamma dis-
tribution can also be obtained by analytic means. After some
straight forward algebraic manipulation, Eq.~15! can be re-
written as

P~L !5S mm

G~m! Dexp~m$@L2 ln~ Ī 0!#2exp@L2 ln~ Ī 0!#%!.

~18!

The argument of the interior exponential can then be ex-
panded into a Taylor series such that

P~L !'S mm

G~m!
exp~2m! DexpS 2

m

2
uL2 ln~ Ī 0!u2D ,

~19!

for uL2ln~Ī 0!u!3.25,29 This can be used as a relatively crude
approximation even form51 because the corresponding
standard deviation ofL is thenp/A651.3. Asm increases the
approximation becomes better. By use of Stirling’s formula29

for m@1, Eq. ~19! transforms to the Gaussian

P~L !'S m

2p D 1/2 expS 2
m

2
uL2 ln~ Ī 0!u2D , ~20!

so that the exponential-gamma distribution for the intensity
level L is distributed according toN „ln~Ī 0!,1/m… for large
m. Therefore, as the time-bandwidth product of the measure-
ment becomes large, the expected intensity level approaches
the logarithm of expected intensity, the intensity level vari-
ance approaches the inverse time-bandwidth product, and the
exponential-gamma distribution converges to a Gaussian.

B. Application to ocean-acoustic transmission loss
statistics

Due to its simple linear dependence on intensity levelL,
transmission lossH, sampled after saturated ocean-acoustic
propagation, has statistical properties that can be readily ex-
pressed in terms of the time-bandwidth product of the mea-
surement. Specifically, TL is related to intensity level by the
equation

H5210 log~eL!1K, ~21!

whereH is measured in dBre: 1 m, andK is a conversion
factor in dBre: 1 mPa and m that can be set to zero without
any loss of generality. Therefore, the probability distribution
for H is readily found to be exponential-gamma, so that the
mean TL

^H&52~10 loge!@ ln~ Ī 0!1c~m!2 ln m#, ~22!

not only depends on the mean intensityĪ , but also on the
time-bandwidth product of the measurement. The TL stan-
dard deviation

^H2&2^H&25~10 loge!sqrt@z~2,m!#, ~23!

on the other hand, only depends upon the time-bandwidth
product. When these moments are plotted as a function ofm,
as in Fig. 3, it becomes evident that Dyer’s 5.6 dB TL stan-

dard deviation and 2.5-dB augmentative bias in mean TL are
only valid for an instantaneous measurement, for which
m51, and not for longer stationary averages as might be
inferred from Ref. 12. As the time-bandwidth product in-
creases, the TL standard deviation asymptotically approaches
zero along the curve~10 loge!sqrt@1/m#, or roughly
4.34sqrt@1/m#, while the TL mean approaches210 log ~the
mean-square transmission! as it must in the deterministic
limit of an arbitrarily large sample size. Additionally, the
asymptotic analysis of the previous section shows that TL
statistics in the saturated region can legitimately be described
as normal for measurement time-bandwidth products exceed-
ing four, which runs counter to some previous suggestions
implicitly based upon unity time-bandwidth measures.12

C. Historical notes

What is referred to here as the exponential-gamma dis-
tribution was apparently first derived by Dyer12 for an en-
tirely different purpose, namely to describe the ‘‘noise of
multiple distant sources.’’ However, the relationship be-
tween degrees of freedom, integration time and temporal co-
herence was not addressed, as is discussed further in the next
section. The distribution was later rediscovered by Barakat4

in an analysis of laser beam speckle patterns observed
through a finite spatial aperture. In Barakat’s analysis, the
relationship between degrees of freedom, spatial aperture and
spatial coherence is derived in accord with Goodman.30 It is
noteworthy that Pierce has arrived at a decibel standard de-
viation equivalent to 4.34sqrt~1/m! dB for Gaussian random
acoustic signals without exploiting the convenience of com-
plex variables.31 The derivation of the Gaussian asymptote of
the exponential-gamma distribution follows the analysis of
Arsenault and April29 and Makris.25

FIG. 3. Transmission loss~TL! standard deviation sqrt[^H2&2^H&2] in
solid line and TL mean̂H& for Ī 051 in dashed line as a function of time-
bandwidth productm. The asymptotic dependence of the TL standard de-
viation for largem, ~10 loge!sqrt@1/m#, is also given in dot-dashed line.
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III. THE AVERAGE INTENSITY OF MULTIPLE
INDEPENDENT CIRCULAR COMPLEX GAUSSIAN
RANDOM FIELDS

When multiple independent CCGR fields are superposed
at a receiver, fluctuations in average intensity can once again
be described by the gamma distribution, as is shown in Sec.
III A. The way that this extends and generalizes previous
statistical formulations for the ‘‘noise of multiple distant
sources’’ and a ‘‘signal plus noise’’ is discussed in Sec.
III B.

A. The gamma distribution

When multiple independentfields are superposed at a
receiver, their individual variances, or equivalently their ex-
pected intensities, sum to the variance of the total field,
which constitutes the expected intensity at the receiver.
However, theintensitiesof the independent fields may not
comprise mutually independent statistics of the measurement
except under certain special circumstances.

To illustrate this situation, let the total received field
z(t)exp~2i2p f ct! be the sum ofS independent CCGR fields
zj (t)exp~2i2p f ct!, emanating from distinct sources or scat-
terers, modulated at carrier frequencyf c such that

z~ t !5(
i51

S

zi~ t !. ~24!

Then it is readily verified with characteristic functions
thatz(t) is a CCGR variable with varianceĪ5^uz2u& equal to
the sum of the variances of thezi(t), which are denoted
by Ī i5^uzi

2u&. The expected intensity of the superposed fields
is then

Ī5(
i51

S

Ī i . ~25!

While the average intensityW of the superposed fields, mea-
sured during periodT, still obeys the gamma distribution
G ~Ī ,m!, the time-bandwidth productm, as defined in Eq.~6!,
is now dependent upon the temporal coherence function of
the superposed fields. Furthermore, when the variance ofW,
namely (Ī )2/m, is expanded in terms of the intensities of the
component fields, cross terms with factorsĪ i Ī j emerge. These
cross terms appear because the instantaneous intensities of
the constituent fields are not independently superposed in an
instantaneous measurement of the total field intensity. An
alternative proof of this is given in Appendix B.

Suppose now that the desired signalz1(t), with inten-
sity Ī 1, is just one component among many received in a
noisy environment, where the noise field isz(t)2z1(t), with
intensity Ī N5 Ī2 Ī 1 . Given the average intensity measure-
mentW, the SNR for the intended signal component then
becomesm( Ī 1/ Ī )

2, which includes the effects of both addi-
tive noise and signal-dependent field fluctuations. Here, the
time-bandwidth productm depends upon the coherence func-
tion of the combined signal and noise fields. Consequently, if
the additive noise extends over a much broader frequency
band than the signal, stationary averaging will reduce the
additive noise component of the variance ofW far more
rapidly than the signal-dependent component. A more effec-

tive way of eliminating out-of-band noise is to filter the total
received field to the signal band, as is typically accomplished
with a matched filter.

B. Application to ocean-acoustic transmission
statistics

The distributions analyzed in Sec. III A of this paper,
namely Eqs.~9! and~15! with Ī defined for multiple sources,
also characterize the ‘‘noise of multiple distant sources’’
studied by Dyer.12 However, there are substantial differences
between Dyer’s formulation and that given here. Specifi-
cally, the distributions defined in Eqs.~27! and ~28! of Ref.
12 were derived under the assumption that the intensity mea-
sured from each distant source is independent, exponentially
distributed and comprised of a single tone spectrally disjoint
from the simultaneously measured tones of the other sources.
However, the condition of Ref. 12 that each source be of
‘‘different frequency’’ is not sufficientto insure that the in-
tensity contribution measured from any one source will be
independent of that measured from any other. Theadditional
requirementfor such independence is that the inverse mea-
surement time 1/T must be less than the spectral separation
between any of the contributing fields. Further, the intrinsic
bandwidth of the field received from each source must be far
less than 1/T for the measured contribution from that source
to be virtually instantaneous, as is necessary for its intensity
distribution to be approximately exponential. These require-
ments can be stated mathematically by expressing the time-
bandwidth product in terms of the spectrumS ( f ) of the
total received field

m5F 1T2 E E
2`

`

S ~ f !S * ~ f 8!S sin~pT~ f2 f 8!

p~ f2 f 8! D 2 d f8 d f G21

,

(26)

which is simply another representation of Eq.~6!. The first
integration is a convolution which sets the number of inde-
pendent frequency cells, while the second integration sums
these cells. The cells are measured in units of 1/T, the dis-
tance from the apex of the sinc function to its first zero
crossing, in accord with the Rayleigh Criterion. Therefore,
the previous statistical description of ‘‘the noise of multiple
distant sources,’’ based upon the assumption that theinten-
sities received simultaneously from the noise sources are
independent,12 comprises a special case of the more general
formulation provided here, where it is assumed that thefields
received from the noise sources are independent.

The distributions for ‘‘signal plus noise’’ of the present
section differ substantially from those given in Eqs.~33! and
~35! of Ref. 12 for reasons similar to those just discussed.
Here, for example, TL for a ‘‘signal plus noise’’ field obeys
the exponential-gamma distribution with standard deviation
~10 loge!sqrt@z~2,m!# dB, where the time-bandwidth product
m is for a measurement of the combined fields with expected
intensityĪ5 Ī 11 Ī N . Therefore, the TL standard deviation for
a ‘‘signal plus noise’’ field never exceeds 5.6 dB as it may in
Ref. 12.
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IV. THE AVERAGE OF INDEPENDENT GAMMA-
DISTRIBUTED INTENSITY MEASUREMENTS

In ocean-acoustics, there are many situations in which
independent and presumably gamma-distributed intensity
measurements are averaged. For example, in displaying the
beamformed output of a hydrophone array, it is common
practice to reduce the variance by averaging the uncorrelated
intensities received on adjacent nonoverlapping beams.14

Similarly, it is sometimes convenient to average independent
multipath arrivals that are temporally disjoint,14 or to average
independent measurements of backscatter to reduce the vari-
ance in scattering strength or target strength estimation.15 To
investigate the statistical properties of such measurements, a
distribution is derived for the average of two independent
gamma-distributed intensity samples that may not be identi-
cally distributed. The asymptotic Gaussian form of this dis-
tribution is then generalized to describe the average of an
arbitrary number of independent but not necessarily identi-
cally distributed intensity samples. This form is later used, in
Sec. VI, to quantify the maximum amount of information
that can be inferred about a desired parameter set from an
amalgamated measurement.

Let the average intensitiesWa andWb be independent
and, respectively, obey the nonidentical gamma distributions
G ~Ī a ,ma! and G ~Ī b ,mb!. The distribution for the sum
k5Wa1Wb is readily obtained as the inverse Fourier trans-
form of the product of the characteristic functions ofWa and
Wb . With the aid of tabulated integral transforms,27,32 the
distribution fork is found to be

P~k!5
~kma / Ī a!ma~kmb / Ī b!mb

kG~ma1mb!
expH 2

mb

Ī b

kJ
31F1Fma ;ma1mb ;kS mb

Ī b

2
ma

Ī a
D G ,

for k>0, ~27!

and zero elsewhere, where1F1 is Kummer’s confluent hyper-
geometric series.32 The mean ofk is ^k&5Ī a1 Ī b , and the
variance is

^k2&2^k&25
~ Ī a!2

ma
1

~ Ī b!2

mb
. ~28!

It is often possible to make the simplification that the time-
bandwidth product of the two measurements is equal so that
ma5mb5m. The distribution for the sumk, readily obtained
by convolution of the distributions forWa andWb , is then

P~k!5
Ap

G~m!
S mk

Ī a2 Ī b
D mS m

k

~ Ī a2 Ī b!

Ī a Ī b
D 1/2

3expH 2
mk

2

~ Ī a1 Ī b!

Ī a Ī b
J Im21/2S mk

2

~ Ī a2 Ī b!

Ī a Ī b
D ,

for k>0, ~29!

and zero elsewhere, whereIm21/2 is a modified Bessel func-
tion of the first kind of orderm21/2. It is noteworthy that,

with a minor change of variables, this equation describes the
probability distribution for partially coherent thermal
light.2,33 The mean ofk is still ^k&5Ī a1 Ī b while the vari-
ance simplifies to

^k2&2^k&25
~ Ī a!21~ Ī b!2

m
. ~30!

The kurtosis

k k531S 6
m
D ~ Ī a!41~ Ī b!4

@~ Ī a!21~ Ī b!2#2
, ~31a!

and skew

sk5S 2

Am
D ~ Ī a!31~ Ī b!3

@~ Ī a!21~ Ī b!2#3/2
, ~31b!

indicate that Eq. ~29! converges to the Gaussian
N ~^k&,^k2&2^k&2! for m@1, as a natural consequence of the
central limit theorem.

When it is the average of the two measurements that is
of interest, the random variablek must be redefined as
k5(Wa1Wb)/2. This average is distributed according to
Eq. ~29! but with Ī a replaced byĪ a/2 andĪ b by Ī b/2. Assum-
ing the statistics across the two measurements are indepen-
dent and ergodic, such thatĪ5 Ī a5 Ī b , the averagek obeys
the distributionG ~Ī ,2m!, as is consistent with a doubling of
the time-bandwidth product of a constituent sample. By as-
ymptotic analysis of Eq.~29!, a rigorous demonstration of
this, and the case whenĪ b approaches zero, is provided in
Appendix C. Similarly, for an ergodic population of indepen-
dent samples distributed according toG ~Ī ,m!, the average of
D samples of this population obeysG ( Ī ,Dm).

The more general scenario is the ensemble average ofD
independent intensity measurementsWi that, respectively,
obey the nonidentical gamma distributionsG (^Wi&,m i). Let
this be described by

k5
1

D (
i51

D

Wi . ~32!

Formi@1, the probability distribution fork converges to the
GaussianN ~^k&,^k&22^k&2!, where respective linear sum-
mations of the constituent means and variances lead to the
mean

^k&5
1

D (
i51

D

^Wi&, ~33a!

and variance

^k2&2^k&25
1

D2 (
i51

D
^Wi&

2

m i
, ~33b!

of the average, as follows from the independence of the con-
stituent measurements. If now eachWi represents the aver-
age intensity ofSi independent CCGR fields, the expectation
value for eachWi is

^Wi&5(
j51

Si

Ī i j , ~34!
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in accord with the analysis of the previous section. The util-
ity of this representation will become evident in Sec. VI and
Appendix E, where a quantitative measure of the amount of
information that can be lost by such an averaging process,
common in ocean-acoustic applications, is presented.

V. THE RATE OF CHANGE OF AVERAGE INTENSITY

It is sometimes possible to infer the velocity of a moving
source or scatterer from a series of incoherent intensity mea-
surements or images.34 When this is possible, it is necessary
to compute the time rate of change of measured intensity by
the method of finite differences. While such a velocity esti-
mate may also require computation of finite differences in
space to account for advection in the image plane, the dis-
tinction between temporal and spatial domain is not crucial
to the present statistical analysis.

Suppose two consecutive averaged intensity measure-
mentsWa andWb are separated by a time intervalDt long
enough to insure that they are independent. Let these mea-
surements obey respective nonidentical gamma distributions
G ~Ī a ,m! and G ~Ī b ,m!. The random variable for intensity
rate is then defined by the difference quotient
V5(Wb2Wa)/Dt. Its probability distribution is readily ob-
tained by inverse Fourier transformation of the relevant char-
acteristic functions. With the aid of the tabulated integral
transforms,27 the distribution forV is found to be

P~V!5
1

G~m!
S muVuDt

Ī a1 Ī b
D mS mDt

puVu

~ Ī a1 Ī b!

Ī a Ī b
D 1/2

3expH 2
mDt

2

uV~ Ī b2 Ī a!u

Ī a Ī b
J

3K1/22mS muVuDt

2

~ Ī a1 Ī b!

Ī a Ī b
D

for 2`,V,`, ~35!

whereK1/22m is a modified Bessel function of the second
kind of order 1/22m. The mean iŝV&5( Ī b2 Ī a)/Dt and the
variance is

^V2&2^V&25
~ Ī a!21~ Ī b!2

m~Dt !2
. ~36!

The kurtosisk V , given by the right-hand side of Eq.~31a!,
and skew

sV5S 2

Am
D ~ Ī b!32~ Ī a!3

@~ Ī a!21~ Ī b!2#3/2
, ~37!

indicate that Eq. ~35! converges to the Gaussian
N (^V&,^V2&2^V&2) for m@1, in accord with the central
limit theorem.

To obtain the second time derivative of intensity,A,
three measurements are needed. If these are equally spaced
in time, the distribution of

A5
Wa22Wb1Wg

~Dt !2
, ~38!

converges to the GaussianN (^A&,^A2&2^A&2) for m@1,
with mean

^A&5
Ī a22Ī b1 Ī g

~Dt !2
, ~39a!

and variance

^A2&2^A&25
~ Ī a!21~2Ī b!21~ Ī g!2

m~Dt !4
. ~39b!

To compute higher-order derivatives, well-known finite dif-
ference equations can be used.35 However, the variance is
proportional to the weighted sum of the variances of the
constituent measures, and gains positive terms linearly with
the order of the derivative to be estimated. Therefore, for
fixed m, the SNR of the derivative estimate typically de-
creases as the order of the derivative increases.

VI. THE RESOLUTION OF PARAMETERS

Parameter resolution is highly dependent upon the way
that intensity measurements are made. To show this, classi-
cal parameter resolution bounds and Fisher information ma-
trices are derived for the various kinds of measurements ana-
lyzed in previous sections. In particular, the logarithmic
measures commonly used in ocean acoustics, such as scat-
tering strength, target strength and TL, must be derived from
a corrected version of the sonar equation that accounts for an
inherent bias dependent on the time-bandwidth product of
the intensity average. The logarithmic measures then have
mean-square errors that approximate the Cramer–Rao lower
bound~CRLB! with increasing accuracy for increasing time-
bandwidth product. Additionally, it is shown how informa-
tion can be lost by certain widely practiced procedures for
reducing a set of independent samples to a single mean sta-
tistic, as is often done in ocean-acoustic processing.

Suppose that a generalNa-dimensional parameter vector
a is to be estimated from theN-dimensional measurement
vectorY. According to estimation theory,36 the mean-square
error of any unbiased estimateâi , based upon measurement
vectorY, can never be less than the CRLB36

E@~ âi2ai !
2#>@J21~a!# i i , ~40!

whereai is the true parameter value andJ~a! is theNa byNa

Fisher information matrix36 with elements

Ji j ~a!52EF ]2

]ai ]aj
ln P~Yua!G . ~41!

A. Information in intensity and log-transformed
intensity measures

Suppose the parametersa are to be estimated from a set
of N independent gamma-distributed intensity measurements
Wk contained in the vectorW. Because no information is lost
in the homomorphic transformationsLk5ln~Wk/I ref!, where
the Lk comprise the vectorL , the Fisher information matri-
ces for measurementsW andL are identical and equal to25

Ji j ~a!5 (
k51

N
mk

~ Ī k~a!!2
] Ī k~a!

]ai

] Ī k~a!

]aj
, ~42!
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as shown in Appendix D. This expression exhibits behavior
that should be expected in a measure of information.
Namely, information is positive semidefinite, and the infor-
mation contained in a joint set of independent measurements
equals the cumulative information of all the individual mea-
surements. Consequently, the CRLB on parameter resolution
is only singular when the Fisher information for all joint
measurements is zero, as is evident by inspection of the par-
ticular case given in Eq.~42!.

Although both intensity measurements and their log-
transforms contain the same information, the information
about parameters linearly related to their respective expecta-
tion values is substantially different. For example, given the
single gamma-distributed measurementW, the CRLB for es-
timation of Ī is simply the variance of the measurement
J21( Ī )5( Ī )2/m, so that the measurementW itself attains the
CRLB as an unbiased estimate ofĪ .

The situation, however, is different for logarithmic mea-
sures. By straightforward manipulation of Eq.~42!, the
Fisher information for the measurementsW or L can be
rewritten as25

Ji j ~a!5 (
k51

N

mk

]^Lk&
]ai

]^Lk&
]aj

, ~43!

with the understanding that themk do not depend ona. Given
the single exponential-gamma-distributed measurementL,
the CRLB for estimation of̂L& therefore isJ21(^L&)51/m.
While the variance ofL is approximately equal to this bound
even form51, it only converges to it in the asymptotic limit
of largem, as shown in Sec. II. The CRLB, therefore, can
only be attained asymptotically for parameters linearly re-
lated to the expected value of intensity level. One should
realize, however, that for practical purposes such asymptotic
convergence occurs for relatively smallm, as noted in Sec.
II.

B. The corrected sonar equation

If the estimate, based upon the exponential-gamma-
distributed measurementL, is for the unknown decibel quan-
tity

a5~10 loge!@ ln Ī 01V0#, ~44!

as it often is in practice, whereV0 is some known constant,
the unbiased estimator

â5~10 loge!@L1V02c~m!1 ln m#, ~45!

only converges to~10 loge!@L1V0# in the asymptotic limit
of large m, where it also attains the CRLB on root-mean-
square errorJ21/2(a)5~10 loge!sqrt@1/m#. The more fre-
quently encountered estimator~10 loge!@L1V0#, however,
has a negative bias that decays from22.5 dB atm51 to zero
along the curve ~10 loge!@c~m!2ln m# as the time-
bandwidth productm increases. Misguided use of this biased
estimator in reverberation analysis, for example, can lead one
to draw the erroneous conclusion that scattering strength in-
creases with the time-bandwidth product of the measure-
ment.

The familiar sonar equationâ5~10 loge!@L1V0#,
therefore, is only valid in the deterministic limit of largem.
The corrected sonar equation given in Eq.~45! includes the
additional terms necessary to account for them-dependent
bias introduced by an exponential-gamma-distributed
intensity-level measurement and is therefore the more gen-
eral form.

C. Information in the average intensity of superposed
fields

The situation becomes more complex when eachWk

measures the average intensity of a superposition ofSk inde-
pendent CCGR fields, as in Sec. III where reception of the
‘‘noise of multiple distant sources’’ and a ‘‘signal plus
noise’’ is considered. In this case, the Fisher information
matrix of Eq.~42! becomes

Ji j ~a!5 (
k51

N mk(q51
Sk ( r51

Sk
] Ī qk~a!

]ai

] Ī rk~a!

]aj

@( l51
Sk Ī lk~a!#2

. ~46!

This form is useful because it explicitly shows how informa-
tion partitioned among the component fields is incorporated
in an intensity measurement of their combination. Addition-
ally, it should be understood that in such a measurement,
some information carried by each individual field is lost.
This is shown explicitly in Appendix E.

D. Information in amalgamated intensity averages

Fisher information for measurements obeying more
complicated distributions, such as those described in Secs.
IV and V, is most readily obtained by the methodology of
Ref. 37. Specifically, suppose the parametersa only depend
on the expectation valuesM5^Y&. Then, given expressions
for M andJ~M !, the Fisher information matrixJ~a! can be
obtained from the equation38

Ji j ~a!5
]MT

]ai
J~M !

]M

]aj
. ~47!

Along these lines, consider the amalgamated averagek of D
independent gamma-distributed measurementsWl that each,
respectively, sample the intensity ofSl independent super-
posed CCGR fields, as described in Sec. IV. For the joint
measurements ofN such independent sampleskk , the Fisher
information matrix is given by

Ji j ~a!5 (
k51

N (q51
Dk ( r51

Sqk (m51
Dk (n51

Smk
] Ī qrk~a!

]ai

] Ī mnk~a!

]aj

( l51
Dk

@( t51
Slk Ī ltk~a!#2

m lk

.

~48!

While this expression is certainly cumbersome, it is not with-
out practical value. In particular, Eq.~48! not only quantifies
the information contained in the kind of amalgamated inten-
sity measurements that are widely used in ocean acoustics,
but also expresses this information in terms of constants of
both the measurement process and constituent fields. The
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amount of information lost in such an amalgamation, how-
ever, can be significant, as is shown in Appendix E.

For illustrative purposes, consider the case when only a
single parameter is to be estimated from a single measure-
ment, and that parameter is either the expectation value of
the measurement or is linearly related to it. Given the amal-
gamated measurementk, the parameterĪ 11, representing the
expected intensity of a single field component of the respec-
tive intensity sampleW1, cannot be resolved better than

J21~ Ī 11!5(
l51

D @( t51
Sl Ī lt~a!#2

m l
. ~49!

This bound equalsD2J21(^k&), and therefore is proportional
to, but potentially much greater than the variance of the
amalgamated measurementk. If such amalgamation cannot
be avoided, accurate estimation of the intensityĪ 11 requires
the time-bandwidth products of the constituent gamma-
distributed intensity samples to be sufficiently large thatĪ 11
greatly exceeds sqrt[J21( Ī 11)].

In many practical scenarios in ocean-acoustics, however,
such amalgamation cannot be avoided. Consider, for ex-
ample, a problem encountered in remotely imaging the ocean
basin with an active towed-array system.14 Returns from
shadow-zone sites, which lie between convergence zones,
generally arrive in time so that no particular path to the sea-
floor makes a dominant contribution during a given measure-
ment period. These returns may also arrive simultaneously
and consecutively during the measurement, leading to an
amalgamated average of the intensities of superposed and
temporally disjoint fields. In such cases, it is often difficult to
obtain sufficiently large time-bandwidth products to resolve
the mean contribution of a particular seafloor patch. Returns
from shadow zone ranges can then be adequately described
as clutter because they hinder presently known means of
inferring geomorphological features of the ocean basin.

E. Information in intensity-rate measures

Finally, consider the intensity rate measurement
V5(Wb2Wa)/Dt, of Sec. V, where bothWa andWb are
gamma-distributed. By application of Eq.~47!, the Fisher
information matrix forN independent measurements of in-
tensity rateVk is

Ji j ~a!5 (
k51

N mkS ] Ī bk
~a!

]ai
2

] Ī ak
~a!

]ai
D S ] Ī bk

~a!

]aj
2

] Ī ak
~a!

]aj
D

@ Ī ak
~a!#21@ Ī bk

~a!#2
.

~50!

Evidentially, the information about some parameterai con-
tained in an intensity-rate measurementVk may vanish when
the expectation value ofVk is zero even if the parameter
could be uniquely determined from the constituent measure-
mentsWak

or Wbk
. A substantial amount of information,

therefore, can be lost when independent measurements are
reduced by a finite difference process. It is easy to verify,
however, that no information about the expected value ofVk

is ever lost when a joint measure ofWak
andWbk

is replaced
by Vk .

VII. CONCLUSIONS

Coherence theory is used to analyze the statistical prop-
erties of ocean-acoustic intensity fluctuations measured after
saturated multipath propagation. Previous analyses in this
area have been implicitly limited to certain special cases for
which the time-bandwidth product of the field measured
from a given source is unity. In this paper, the intensity
statistics of the saturated region are extended and generalized
to be a function of the measurement time and temporal co-
herence of the received field. The resulting intensity distri-
butions are therefore highly relevant to modern ocean-
acoustic sonar and communication systems which employ
time-bandwidth products that often exceed unity, or average
over many independent samples.

More general expressions are also offered for the ‘‘noise
of multiple distant sources.’’ Specifically, it is shown that a
previous and well-known assumption used to describe this
noise, that theintensitiesreceived simultaneously from the
noise sources are mutually independent, is a special case of
the more general assumption adopted in this paper that the
fields received from the noise sources are independent.

The statistics of averages of independent intensity
samples are then examined because such amalgamation is
commonly employed in a variety of ocean-acoustic measur-
ing systems. The statistics of intensity rate measures ob-
tained by finite difference are also examined to address the
issue of monitoring a moving source or scatterer.

A brief discussion of classical parameter resolution
bounds and Fisher information for the various distributions
encountered is provided. This is used to show that parameter
resolution is highly dependent upon the way that intensity
measurements are made. For example, the logarithmic mea-
sures commonly used in ocean acoustics, such as scattering
strength, target strength and TL, must be derived from a
corrected version of the sonar equation that accounts for an
inherent bias dependent on the time-bandwidth product of
the intensity average. This bias attains its maximum magni-
tude of 2.5 dB for an instantaneous sample and only vanishes
in the deterministic limit of large time-bandwidth product.
The logarithmic measures then have mean-square errors that
approximate the Cramer–Rao lower bound with increasing
accuracy for increasing time-bandwidth product.

Finally, a quantitative measure is given for the amount
of information that can be lost by certain widely practiced
procedures for reducing a set of measurements to a single
mean statistic. Such reduction is often employed in ocean-
acoustic processing but may be detrimental to subsequent
parameter estimates.

APPENDIX A: EULER’S PSI FUNCTION AND
RIEMANN’S ZETA FUNCTION

Euler’s psi function is defined by27

c~m!52C2 (
k50

` S 1

m1k
2

1

k11D , for real m, ~A1!

52C1 (
k51

m21
1

k
, for integer m.1, ~A2!

52C, for m51,
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whereC is Euler’s constant,

C5 lim
m→`

H (
k51

m21
1

k
2 ln mJ 50.577215... . ~A3!

Riemann’s zeta function is defined by27

z~y,m!5 (
k50

`
1

~m1k!y ,

for y.1, mÞ0,21,22,23,... . ~A4!

APPENDIX B: VARIANCE OF THE INSTANTANEOUS
INTENSITY OF A SUPERPOSITION OF
INDEPENDENT CCGR FIELDS

Following Sec. III A, the instantaneous intensity for a
sum of independent CCGR fields can be written as

I ~ t !5(
i51

S

zi~ t !(
j51

S

zj* ~ t !, ~B1!

with expectation value

^I &5EF(
i51

S

zi~ t !(
j51

S

zj* ~ t !G5(
i51

S

E@ uzi~ t !u2#, ~B2!

where the last equality follows from the independence of the
fields. The squared intensity has expectation value

^I 2&5EF(
i51

S

zi~ t !(
j51

S

zj* ~ t !(
k51

S

zk~ t !(
l51

S

zl* ~ t !G
5EF(

i51

S

zi~ t !(
j51

S

zj* ~ t !GEF (
k51

S

zk~ t !(
l51

S

zl* ~ t !G
1EF (

k51

S

zk~ t !(
j51

S

zj* ~ t !GEF(
i51

S

zi~ t !(
l51

S

zl* ~ t !G ,
~B3!

where the second equality follows from CCGR moment
factoring.2 Using Eq.~B2!, this can be written as

^I 2&52S (
i51

S

E@ uzi~ t !u2# D 2, ~B4!

so that the variance is the square of the sum of the expected
intensities of the superposed fields

^I 2&2^I &25S (
i51

S

E@ uzi~ t !u2# D 2. ~B5!

APPENDIX C: LIMITING FORMS FOR THE
PROBABILITY DISTRIBUTION OF THE SUM OF TWO
INDEPENDENT GAMMA-DISTRIBUTED INTENSITY
MEASUREMENTS

When the expectation values of the two independent in-
tensity samples of Sec. IV are nearly equalĪ a' Ī b , the as-
ymptotic form I n~h!'~h/2!n/G~n11! for small argumentsh
may be substituted for the modified Bessel function in Eq.
~29!, assumingn is not a negative integer. The resulting dis-
tribution for the sumk5Wa1Wb is then

P~k!'
2Ap

G~m1 1
2!G~m!

S m2

4Ī a Ī b
D m

k2m21

3expH 2mk
~ Ī a1 Ī b!

2Ī a Ī b
J . ~C1!

After applying Gauss’ multiplication formula for gamma
functions,

G~nx!5~2p!1/2~12n!nnx21/2)
k50

n21

GS x1
k

nD , ~C2!

for the casen52, and transforming the sumk5Wa1Wb to
the averagek5(Wa1Wb)/2, it is readily verified that Eq.
~C1! reduces to

P~k!5
~2m/ Ī !2mk2m21 exp$22mk/ Ī %

G~2m!
, ~C3!

when Ī5 Ī a5 Ī b . It is noteworthy that Eq.~C3! also corre-
sponds to the probability distribution for unpolarized thermal
light.2

Similarly, ash becomes sufficiently large, the modified
Bessel function takes the formI n(h) ' eh/A2ph. Applying
this to Eq.~29! for the caseĪ a@ Ī b the asymptotic distribu-
tion is simplyG ~Ī a ,m!. These limits may also be verified by
use of characteristic functions.

APPENDIX D: FISHER INFORMATION FOR
INDEPENDENT GAMMA AND EXPONENTIAL-GAMMA-
DISTRIBUTED MEASUREMENTS

As noted in Sec. VI, the Fisher information for the joint
gamma-distributed measurementsW, obeying the condi-
tional probability distribution

P~Wua!5)
k51

N ~mk / Ī k~a!!mkWk
mk21 exp$2mkWk / Ī k~a!%

G~mk!
~D1!

is the same as that for the exponential-gamma distributed
measurementsL , obeying the conditional distribution

P~L ua!5)
k51

N S mk

Ī 0k~a!D
mk

expH 2mk

exp~Lk!

Ī 0k~a!
1mkLkJ

G~mk!
.

~D2!

It is possible to demonstrate this by inspection of Eq.~47!
with the additional knowledge that the matricesJ~^W&! and
J~^L &! have respective inverses that take the form of the as-
ymptotic covariances ofW and L in the Gaussian limit of
largemk . For example,J~^W&! andJ~^L &! areN by N diag-
onal matrices with respective elements

Ji j ~^W&!5m i /~ Ī i !
2d i j , and Ji j ~^L &!5m id i j .

The more straight forward approach prescribed by Eq.
~41! is instead presented. For the Fisher information matrix
given the measurementsW, substitution of the right-hand
side of Eq.~D1! in to Eq. ~41! yields
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Ji j ~a!52EF ]

]ai
(
k51

N

2mk

]

]aj
S ln Ī k1

Wk

Ī k
D G . ~D3!

Application of the derivative operator with respect toaj
leads to

Ji j ~a!52EF ]

]ai
(
k51

N

2mkS 1
Ī k

2
Wk

~ Ī k!
2D ] Ī k

]aj
G . ~D4!

Taking the derivative with respect toai leads to

Ji j ~a!5EF (
k51

N
mk

~ Ī k!
2 H S 2Wk

Ī k
21D ] Ī k

]ai

] Ī k
]aj

1~ Ī k2Wk!
]2Ī k

]ai ]aj
J G . ~D5!

Finally, application of the expectation value operator yields
Eq. ~42! which can be rewritten as

Ji j ~a!5 (
k51

N

mk

] ln Ī k~a!

]ai

] ln Ī k~a!

]aj
. ~D6!

Here, Ī k~a! can be replaced byĪ 0k~a!5Ī k~a!/I ref to reference
the logarithmic measure to physical units without altering the
Fisher information.

For the Fisher information matrix given the measure-
mentsL , substitution of the right-hand side of Eq.~D2! in to
Eq. ~41! yields

Ji j ~a!52EF ]

]ai
(
k51

N

2mk

]

]aj S ln Ī 0k1
exp~Lk!

Ī 0k
D G .

~D7!
BecauseWk/I ref equals exp(Lk) by definition, andIref does
not depend ona, Eq.~D7! is identical to Eq.~D3!. Therefore,
Eq. ~D7! reduces to

Ji j ~a!5 (
k51

N

mk

] ln Ī 0k~a!

]ai

] ln Ī 0k~a!

]aj
, ~D8!

which equals Eq.~D6! as expected.
It is noteworthy that Eq.~D6! can be obtained directly

from the Gaussian form ofP~Wua! or P~L ua! in the asymp-
totic limit of mk@1, as is consistent with the fact that both
the intensity measurementW and intensity level measure-
mentL contain the same information.

APPENDIX E: THE LOSS OF INFORMATION IN
COMBINING NONIDENTICALLY DISTRIBUTED FIELDS
OR INTENSITIES

It is well established that the Fisher information matrix
for a joint set of independent measurements equals the sum
of the Fisher information matrices for each individual
measurement.36,38–39For example, given scalar parametera,
the conditional probability distribution for the joint measure-
ments ofS independent and instantaneous CCGR fieldszi is
given by the product

)
i51

S

Pzi
~zi ua!. ~E1!

The corresponding Fisher information is then

Jjoint~a!5(
i51

S
1

~ Ī i !
2 S ] Ī i

]a D 2. ~E2!

Following Sec. VI C, the Fisher information for an instanta-
neous measurement of the sumz of the fieldszi is

Jsum~a!5
1

~( i51
S Ī i !

2 S ]

]a
(
j51

S

Ī j D 2, ~E3!

where this information is unchanged if the sumz is replaced
by z/AS. As a consequence of the positive semidefiniteness
of expected intensity and the presence of squared terms, the
following relationship must hold true

H (
i51

S

(
j51

i

~12d i j !S Ī jĪ i ] Ī i
]a

2
Ī i
Ī j

] Ī j
]a D 2J

1H (
k51

S S 1
Ī k

] Ī k
]a D 2S (

l51

S

(
m51

l

~12d lm!2Ī l Ī mD J >0, ~E4!

wheredi j is the Kronecker delta. By straight forward alge-
braic manipulation of relation~E4! it can be shown that

Jjoint~a!>Jsum~a!. ~E5!

Therefore, the joint measurements of theS fields zi contain
more information than a single measurement of the sumz of
these fields. When these fields are identically distributed, the
joint measurements contain preciselyS times the information
of the sum. More generally, dividing the left-hand side of
relation ~E4! by

S (
k51

S

Ī kD 2, ~E6!

gives the information about parametera that is lost by re-
taining the sum rather than the joint measurements.

Similarly, given scalar parametera, the conditional
probability distribution for the joint measurement ofD inde-
pendent gamma-distributed intensity measurementsWi is
given by the product

)
i51

D

PWi
~Wi ua!. ~E7!

The corresponding Fisher information is then

J joint~a!5(
i51

D
m

^Wi&
2 S ]^Wi&

]a D 2, ~E8!

when the time-bandwidth product of eachWi equalsm. Fol-
lowing Sec. VI D, the Fisher information for the averagek of
theseD gamma-distributed intensitiesWi is

J average~a!5
m

( j51
D ^Wj&

2 S ]

]a (
i51

D

^Wi& D 2. ~E9!

The following relationship must hold true:

H (
i51

D

(
j51

i

~12d i j !S ^Wj&

^Wi&

]^Wi&
]a

2
^Wi&

^Wj&

]^Wj&
]a D 2J >0

~E10!
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because the left-hand side of the equation must be positive
semidefinite due to the squared terms. By straight forward
algebraic manipulation of relation~E10! it can be shown that

J joint~a!>J average~a!, ~E11!

where equality holds when theWi are identically distributed.
The joint measurements of theD intensitiesWi , therefore,
contain more information than a single measurement of av-
erage intensityk unless the intensities are identically distrib-
uted, in which case the joint measurements and average have
equal information. More generally, the left-hand side of re-
lation ~E10! divided by

(
k51

D
^Wk&

2

m
, ~E12!

gives the information about parametera that is lost by keep-
ing the average rather than the joint measurements.

Finally, by letting^Wi&5 Ī i , D5S, m51, and then com-
paring Eq.~E9! with Eq. ~E3!, one can see that information
is always gained by measuring the instantaneous intensities
of the S independent fields separately and then averaging
them, rather than by first measuring the intensity of the su-
perposed fields and then dividing byS. Although this gain of
information can be substantial, it requires the ability to mea-
sure the intensity of each independent fieldzi separately,
which is not always possible for the reasons given in Sec.
III B.
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